Exact microstructure-dependent Timoshenko beam element
نویسندگان
چکیده
منابع مشابه
Analysis of Complex Composite Beam by Using Timoshenko Beam Theory & Finite Element Method
Fiber-reinforced composites, due to their high specific strength, and stiffness, which can be tailored depending on the design requirement, are fast replacing the traditional metallic structures in the weight sensitive aerospace and aircraft industries. An analysis Timoshenko beam theory for complex composite beams is presented. Composite materials have considerable potential for wide use in ai...
متن کاملVibration of Timoshenko Beam-Soil Foundation Interaction by Using the Spectral Element Method
This article presents an analysis of free vibration of elastically supported Timoshenko beams by using the spectral element method. The governing partial differential equation is elaborated to formulate the spectral stiffness matrix. Effectively, the non classical end boundary conditions of the beam are the primordial task to calibrate the phenomenon of the Timoshenko beam-soil foundation inter...
متن کاملComparing Timoshenko Beam to Energy Beam for Fitting Noisy Data
In this paper we develop highly flexible Timoshenko beam model for tracking large deformations in noisy data. We demonstrate that by neglecting some physical properties of Timoshenko beam, classical energy beam can be derived. The comparison of these two models in terms of their robustness and precision against noisy data is given. We demonstrate that Timoshenko beam model is more robust and pr...
متن کاملDiscretization of a dynamic thermoviscoelastic Timoshenko beam
We consider a nonlinear model for a thermoelastic beam that can enter in contact with obstacles. We first prove the well-posedness of this problem. Next, we propose a discretization by Euler and Crank-Nicolson schemes in time and finite elements in space and perform the a priori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach. Résumé: Nous cons...
متن کاملIntroducing the Logarithmic finite element method: a geometrically exact planar Bernoulli beam element
We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mechanical Sciences
سال: 2016
ISSN: 0020-7403
DOI: 10.1016/j.ijmecsci.2016.03.023